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Abstract
The decision about how to handle their end-of-life products is a
strategic issue of major importance for many firms. However,
inaccurate demand forecasts along with the unknown usage period and
reusability of a product make capacity planning in the reverse channel
of a closed-loop supply chain (CLSC) a difficult task to accomplish.
This paper studies the efficiency of a System Dynamics (SD) model,
proposed by Georgiadis et al. (2006), in tracking near-optimal
capacity planning policies for the collection and remanufacturing
activities in a single product CLSC under various non-standard
lifecycle patterns. We take into consideration the duration of the
products’ usage period, the percentage of collected products rejected
for reuse after inspection, and specific lifecycle patterns that
differ substantially from the standard growth–maturity-decline
lifecycle pattern. The analysis of variance (ANOVA) of the results
obtained from 648 such case-studies reveals the dependence of the
near-optimal capacity planning policies to these factors. A very
appealing feature stemming from the results is that the near-optimal
capacity planning policies lie in a short range for almost all the
examined cases. The results also verify a positive property of the
proposed model about the robustness of the near-optimal capacity
planning policies to moderate changes in actual total demand.

Keywords: Closed-loop supply chain, Remanufacturing, Capacity
planning, Non-standard product lifecycles, System Dynamics, ANOVA.

JEL classifications: Industry Studies, Manufacturing, L600

Introduction

Reverse channels of closed-loop supply chains (CLSCs) are strongly
characterized by uncertainties; the unknown demand pattern and the
variability of a product’s usage period along with the unknown
reusability of the returned products, render the capacity planning for
remanufacturing a challenging procedure. Moreover, a capacity
alteration decision is associated with important questions such as
“when”, “where” and “how much” to expand/contract. Additional critical
capacity planning issues include the volume and timing of returns
which can be reused to satisfy new demand, owing to the dependence of
their reusable part on both the demand and sales patterns.

mailto:efsatha@auth.gr
mailto:geopat@auth.gr


Athanasiou-Georgiadis, 169-180

MIBES 2009 - Oral  170

In literature, the desired remanufacturing capacity levels are mainly
determined indirectly, without considering any endogenous restrictions
or adaptation mechanisms. Aksoy and Gupta (2001) consider the
remanufacturing capacity through the variation of the remanufacturing
rate of a flow shop system which is depended on the service rate, the
breakdown and repair rate of the returned products and the buffer
capacity of each station. Kekre et al. (2003) maximize the effective
throughput of a remanufacturing system considering simultaneous line
balancing and line length (number of production stations). Franke et
al. (2006) present the case of mobile phones remanufacturing where the
capacity planning in remanufacturing activities is examined using an
endogenous continuous adaptation process. An endogenous process is
also examined by Debo et al. (2006) for the study of diffusion of
remanufactured products; the authors assume substitution between new
and remanufactured products and study the optimal production and
remanufacturing capacity levels. Other studies investigate the
capacity planning of recovery and remanufacturing considering
location-allocation modeling approaches; various methodological
approaches have been applied such as steady-state simulation modeling
(Schultmann et al., 2003) and nonlinear mixed-integer programming (Min
et al., 2006; Lieckens and Vandaele, 2006).

The dynamic change of demand and of used product returns strongly
characterize the CLSCs; therefore, capacity planning in CLSCs involves
complex models in order to handle first, the large number of state
variables and second, the cost structure. System Dynamics (SD) theory
provides a simple and flexible modeling and simulation framework in
adjusting the actual levels of capacity to the desired values using
feedback mechanisms. The SD methodological approach in capacity
planning issues of reverse logistics networks was firstly introduced
by Sterman (2000) who presents the case of a pulp and paper industry.
Georgiadis et al. (2003) introduce systematically the use of SD
methodology in the analysis of CLSCs; they use a set of level of
remanufacturing and collection capacities to study the effect of
environmental issues on reverse channel’s activities. Vlachos et al.
(2007) study capacity expansion policies in the reverse channel of a
CLSC with remanufacturing activities assuming stationary demand.
Georgiadis et al. (2006) develop a SD model for a single product CLSC
with remanufacturing. They analyze the capacity planning policies both
for collection and remanufacturing activities in the reverse channel,
assuming that demand may follow different but standard lifecycle
patterns consisted of the typical introduction, growth, maturity and
decline stages. Specifically, they investigate how the lifecycle and
return patterns of a product affect the near-optimal capacity policies
regarding expansion and contraction of collection and remanufacturing
capacities. The SD model includes an endogenous process for capacity
planning which assumes nonlinear expansion costs; the capacity
planning policies depend first, on economies scale and second, on both
the volume of product returns and the quality of the used products.

This paper takes the last research further by studying the efficiency
of the proposed capacity planning methodology in the reverse channel
of a CLSC under lifecycles that differ substantially from the standard
growth–maturity-decline pattern. In our study we further take into
consideration the products’ usage period and the percentage of
collected products rejected for reuse after inspection. Our
contribution lies in the investigation of how an unpredictable
lifecycle pattern and its consequences on product returns affect the
near-optimal expansion and contraction capacity planning policies for



Athanasiou-Georgiadis, 169-180

MIBES 2009 - Oral  171

the collection and remanufacturing activities. The system’s response
is studied throughout the product lifecycle, according to a residence
time (usage period) distribution. Using the model in conjunction with
an optimum-seeking grid procedure, we determine near-optimal capacity
policies; as optimization criterion we employ the net present value of
total supply chain profit for a long-term planning horizon.

The system under study

A simplified description

Figure 1 shows the CLSC under study in a simplified version. The
actors involved in the forward channel are the producer and the
distributor, while in the reverse channel are the collector and the
remanufacturer. The forward channel comprises two echelons; the
Serviceable Inventory and the Distributor’s Inventory. The reverse
channel starts at the end of the products’ usage period and comprises
also two echelons: Collected Products and Reusable Products. At the
end of their usage period, the Used Products are either uncontrollably
disposed of or collected and inspected for possible reuse. The
inspection operations (just after collection) separate the part of
returns that can be remanufactured into “as-good-as-new” products. The
used products accepted for remanufacturing are directed to the
remanufacturing facilities while the rejected products enter the
reverse channel of other logistics networks (e.g. B class products) or
they are disposed of controllably. To prevent economic obsolescence
(Guide et al., 2006) or endless accumulation of reusable products, if
a stock remains unused for more than Reusable Stock Keeping Time it is
then directed to the reverse channel of other logistics networks (e.g.
refurbishing). The reusable products after a remanufacturing process
turn into remanufactured products. We assume that remanufacturing
produces “as-good-as-new” products that conserve their original
identity by carrying out the necessary disassembly, overhaul and
replacement operations; the demand can therefore be satisfied by any
mix of original or remanufactured products. Copiers (Krikke et al.,
1999), toner cartridges (Ginsburg, 2001), single use cameras
(www.kodak.com) are representative examples that fit the above
description. The loop closes through the flow of remanufactured
products to the serviceable inventory. Inventories are managed by
means of a combined “pull-push” policy. A “pull” policy is adopted in
the forward channel to maintain better stock control, while a “push”
policy is adopted in the reverse channel first to express, indirectly,
the pressure of legislation on manufacturers for end-of-life-products
management and the pressure to reduce the used product flows going
into landfills and second to satisfy more demand with less costly
remanufactured products.
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Figure 1: The system under study (simplified)

Generic stock and flow diagram of the two-product model

Figure 2 illustrates the generic stock and flow diagram (Sterman,
2000) of the CLSC under study. According to SD mapping notation,
stocks are represented by rectangles and inflows/outflows by arrows
pointing into/out of the stocks. Valves ( ) control the flows,
depending on decision rules and mechanisms. Causal links ( ) represent
causal influences among variables; the direction and polarity (“+” or
“-”) of a causal link explains the respective effect. Variables
expressing forecasts are shown in small italics while parameters are
in small plain letters. In this study, rules controlling the flows are
indicated in ellipses. The control rules of Production Rate and
Distributor’s Orders are based on the structure suggested by Sterman
(1989) and are presented analytically in Georgiadis et al. (2006).

In the forward channel, Production Rate of new products using Raw
Materials, along with Remanufacturing Rate of Reusable Products
increase Serviceable Inventory which is depleted by Shipments to
Distributor. Shipments to Distributor deplete his Orders Backlog and
increase Distributor’s Inventory, which is in turns depleted by Sales
to satisfy Demand for Products. We assume that all unsatisfied
distributor’s orders (Orders Backlog) and demand (Demand Backlog) are
backlogged and satisfied in a subsequent period.

The rest of the stock and flow diagram is described in the following
three subsections. Specifically, in the next subsection we develop a
methodology used to produce the different product lifecycle patterns
taken into consideration in this study. The lifecycle and product
characteristics used in this process are presented in subsection 2.4,
while in subsection 2.5 we present the evolution over time of stocks
and used products flows in the reverse channel of the CLSC.
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Figure 2: Stock and flow diagram of the two-product model.

Design of different product lifecycles

In order for our results to be comparable, we develop a methodology
that produces different lifecycle patterns that do not follow the
standard growth-maturity-decline form, but also have a specific link
between them. In short, we produce a non-standard lifecycle pattern by
adding the demand of two identical standard lifecycle patterns but
with a differentiation in their timing, stemming from the variable
Timing Points. Specifically, we consider six different Timing Points
for the initiation of the second standard lifecycle pattern during the
first one. As shown in Figure 3, these Timing Points are the middle
and the end point of the growth stage of the first lifecycle pattern
(Timing Point “a” and “b” respectively), the middle point of the
maturity stage (Timing Point “c”), and the beginning, the middle and
the end point of the decline stage (Timing Point “d”, “e” and “f”
respectively). The two identical standard lifecycle patterns used in
this procedure are generated by taking into consideration specific
lifecycle characteristics (always the same between the two standard
product lifecycles) presented in the following section.

Figure 3: Alternative Timing Points for the second lifecycle pattern.
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The summation of the two identical standard lifecycle patterns subject
to the six alternative Timing Points “a” to “f” gives the general form
of the different Lifecycle Patterns “a” to “f” respectively, as shown
in Figure 4. These general forms of the Lifecycle Pattern are used in
our study as the alternative demand patterns of the single existing
product. However, since the two identical standard lifecycle patterns
depend on the product lifecycle considerations (discussed in the
following section), the in particular form of a Lifecycle Pattern
further depends on the values of the product-lifecycle considerations
that form the two standard lifecycle patterns.
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Figure 4: Lifecycle Patterns under study

Lifecycle and product characteristics

To form the in particular pattern of the two standard lifecycles, we
use the lifecycle characteristics introduced by Georgiadis et al.
(2006): the lifecycle length (Lifecycle), the length of the maturity
stage in a Lifecycle (Pattern) and the maximum demand value during the
Lifecycle (Peak Demand). The usage period is taken into consideration
by the deviation of residence time with Lifecycle (Residence Index).
The quality level of product returns is described by Failure
Percentage, which is the percentage of collected products rejected for
reuse. The two standard lifecycle patterns used to form the Lifecycle
Pattern of each case are considered to be exactly the same inter se.

Stocks and used product flows in the reverse channel

Sales (see Figure 2) is given by equation 1:

( )min Distributor's Inventory, Demand Backlog
Sales=

Delivery Time

     (1)

where, Distributor’s Inventory and Demand Backlog are given by:
d(Distributor’s Inventory)/dt= (Shipments to Distributor) – (Sales) (2)
d(Demand Backlog)/dt= (Product Demand) – (Sales) (3)
Sold products after a Residence Time turn into Used Products. Figure 5
shows the dynamics of Total Demand, Sales and Used Products of a case.
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Figure 5: Dynamics of Total Demand, Sales and Used Products

The flows of product returns in the reverse channel depend on used
products’ pattern, the quality level of returns and the adequacy of
collection and remanufacturing capacities. As shown in Figure 2, Used
Products are either collected (Collection Rate) adding to Collected
Products, or disposed of uncontrollably (Uncontrollably Disposed
Products). According to Failure Percentage, Collected Products are
either accepted for remanufacturing thus increasing Reusable Products,
or rejected and are controllably disposed of (Disposed Products).
Reusable Products are decreased both by Remanufacturing Rate and by
Controllable Disposal; the last rate is activated only if a reusable
product remains unused for more than Reusable Stock Keeping Time.
Collection Rate is restricted by Collection Capacity while
Remanufacturing Rate is restricted by Remanufacturing Capacity.
Capacity policies include both expansion and contraction decisions for
the collection and remanufacturing capacities. We consider the same
modeling approach presented analytically in Georgiadis et al. (2006).
In brief, the rates of collection capacity expansion (CC Expansion
Rate) and contraction (CC Contraction Rate) depend on the discrepancy
(CC Discrepancy) between Collection Capacity and its desired level
(Desired CC), arising as an exponential smoothing of Used Products. CC
Expansion/Contraction Rate is proportional to CC Discrepancy;
specifically, CC Discrepancy is multiplied by the capacity planning
control parameters Kc1 (for expansion) and Kc2 (for contraction),
defining the magnitude of each decision. The values of Kcj characterize
the collection capacity planning policies that can either be trailing
(Kcj<1), matching (Kcj 1) or leading (Kcj>1). To capture the needed
lead-time between a decision and its realization, the model uses the
variables CC Adding Rate and CC Depleting Rate which are the delayed
values of CC Expansion Rate and CC Contraction Rate respectively.
Collection Capacity is therefore defined as by the following equation:
d(Collection Capacity)/dt= (CC Adding Rate) – (CC Depleting Rate) (4)
Similar modeling approach is applied for Remanufacturing Capacity; the
only difference is that its desired level arises as an exponential
smoothing of Sales multiplied by [1-(Failure Percentage)]. Thus,
Kc1/Kc2 (for collection capacity expansion/contraction) and Kr1/Kr2 (for
remanufacturing capacity expansion/contraction) are the capacity
planning control parameters (Kij) that fully describe the capacity
policies. Figure 6 depicts the evolution over time of Sales, Used
Products, Collection Rate and Remanufacturing Rate for the case of
Figure 5; Figure 6a corresponds to aggressive capacity planning
policies while Figure 6b corresponds to less aggressive ones.
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Figure 6: Dynamics of Collection and Remanufacturing Rate.

Numerical investigation and discussion

Experimental design

In this study we focus on the lifecycle and product characteristics’
effect on the optimal capacity planning policies. Our research studies
a full factorial experiment of the following six control factors:
Lifecycle Pattern, Lifecycle, Pattern, Peak Demand, Residence Index,
and Failure Percentage. In order for our results to be comparable with
those of Georgiadis et al. (2006) we use the same sets of level for
the control factors, shown in Table 1. The three Patterns mentioned in
Table 1 are generated by the different length of the maturity stage,
as illustrated in Figure 7. The remaining values of the model
parameters are set equal to those given in Georgiadis et al. (2006).
All possible combinations of these control factors are 22*33*6=648,
giving a total of 648 experimental runs. In each combination, we track
the near optimal values of Kc1, Kc2, Kr1 and Kr2.

Table 1: Control factors and sets of level

Control factors Sets of Level
Lifecycle Pattern a b c d e f
Lifecycle (weeks) 250 (Medium) 500 (Long)
Pattern (see Figure 7) Pattern 1 Pattern 2 Pattern 3
Peak Demand (units/week) 500 (Low) 1,000 (Medium) 1,500 (High)
Residence Index 0.2 (Low) 0.35 (Medium) 0.5 (High)
Failure Percentage 0.2 (Low) 0.4 (Medium)

Figure 7: Different Patterns of a lifecycle

Experimental results and ANOVA

The ranges of the near optimal Kij’s for each case are illustrated in
Table 2 in twelve different cases of 54 experiments. Each case is
represented as li.j, where i (i=a...f) indicates the Lifecycle Pattern
and j (j=0.2, 0.4) indicates the value of Failure Percentage.

Table 2: Optimal value ranges of capacity planning control parameters

Capacity Planning Control ParameterCase
Kc1 Kc2 Kr1 Kr2

la,0.2 17.8-23.2 Insensitive(1)

3 experiments(2) /Kc2=3.2
29.0-31.8 No systematic behavior

(<6.0 or insensitive(4))

la,0.4 17.6-22.2 Insensitive(1)

3 experiments(2) /Kc2=2.0
22.4-24.0 No systematic behavior

(<6.0 or insensitive(4))
lb,0.2 17.2-20.0 Insensitive(1) 27.0-32.8 No systematic behavior
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3 experiments(3) /Kc2=1.6 (<6.0 or insensitive(4))

lb,0.4 17.2-20.0
Insensitive(1)

3 experiments(2) /Kc2=2.0
3 experiments(3) /Kc2=1.4

20.4-24.4
No systematic behavior
(<6.0 or insensitive(4))

lc,0.2
13.2-14.8

and
17.8-19.6

Insensitive(1)

3 experiments(2) /Kc2=1.8
3 experiments(3) /Kc2=1.2

21.0-21.8
and

25.0-32.4

No systematic behavior
(<6.0 or insensitive(4))

lc,0.4 15.2-20.6
Insensitive(1)

3 experiments(2) /Kc2=1.0
3 experiments(3) /Kc2=1.0

10.6-12.0
and

15.8-22.2

No systematic behavior
(<6.0 or insensitive(4))

ld,0.2 19.0-22.4 Insensitive(1) 15.0-17.2 No systematic behavior
(<6.0 or insensitive(4))

ld,0.4 19.0-22.4 Insensitive(1) 10.8-12.8 No systematic behavior
(<6.0 or insensitive(4))

le,0.2 18.8-22.6 Insensitive(1) 15.2-17.8 No systematic behavior
(<6.0 or insensitive(4))

le,0.4 18.6-22.8 Insensitive(1) 11.4-12.8 No systematic behavior
(<6.0 or insensitive(4))

lf,0.2 19.0-22.2 Insensitive(1) 14.8-17.2 No systematic behavior
(<6.0 or insensitive(4))

lf,0.4 18.8-22.2 Insensitive(1) 11.6-12.8 No systematic behavior
(<6.0 or insensitive(4))

(1)Different values of Kc2 affect the Total Supply Chain Profit less than 1%
(2)Lifecycle=250 weeks, Pattern 3, Residence Index=0.2, Peak Demand=500 or 1,000 or 1,500

units/week
(3)Lifecycle=500 weeks, Pattern 3, Residence Index=0.2, Peak Demand=500 or 1,000 or 1,500

units/week
(4)Different values of Kr2 affect the Total Supply Chain Profit less than 2%

In order to examine the sensitivity of the near-optimal values of Kc1,
Kc2, Kr1, and Kr2 to the six control factors, we use the Analysis of
Variance (ANOVA). Table 3 illustrates the results of ANOVA for the
dependence of the response variables to the control factors, up to
third order interactions. The p-value column shows the probability of
making error if the null hypothesis (the control factor affects the
response variable) is accepted (type II error). The partial Eta-
squared column (PES) shows the magnitude of the effect of each control
factor on the response variables (always between 0 and 1); the higher
the PES value of a control factor, the higher the magnitude of its
effect on the response variable. For brevity, we depict only the
second and third order interactions that have PES value above 0.30.

Table 3: Effects of the control factors on the response variables

Response Variable Kc1 Kc2 Kr1 Kr2
Control Factors and their Interactions p-value PES p-value PES p-value PES p-value PES
Lifecycle Pattern .000 .826 .000 .390 .000 .982 .000 .132
Lifecycle .077 .008 .365 .002 .252 .003 .000 .686
Pattern .000 .680 .000 .510 .000 .312 .000 .887
Residence Index (RI) .000 .137 .000 .510 .020 .019 .002 .030
Peak Demand 1.00 .000 1.00 .000 1.00 .000 1.00 .000
Failure Percentage .000 .038 .037 .011 .000 .945 .000 .328
Lifecycle* Pattern .000 .139 .440 .004 .000 .093 .000 .711
Pattern* RI .000 .201 .000 .675 .004 .037 .011 .032
Pattern* Failure Percentage .007 .024 .013 .021 .000 .417 .000 .202
Pattern* Lifecycle Pattern .000 .652 .000 .561 .000 .534 .000 .420
RI * Lifecycle Pattern .000 .115 .000 .561 .000 .102 .001 .069
Failure Percentage* Lifecycle Pattern .000 .088 .044 .028 .000 .738 .000 .175
Pattern* RI* Lifecycle Pattern .000 .378 .000 .719 .000 .126 .000 .246
Pattern* Failure Percentage* Lifecycle Pattern .000 .146 .012 .054 .000 .641 .000 .346

Considering three classes for the power of significance (strong for
PES>0.7, medium for 0.7 PES>0.5, and weak for PES 0.5), turns back
from Table 3 that Lifecycle Pattern has a strong effect both on Kc1 and
Kr1. Lifecycle affects only Kr2, with a medium effect. Pattern has a
medium effect on Kc1 and Kc2, a weak effect on Kr1, and a strong effect
on Kr2. Residence Index affects only Kc2, with a medium effect. Peak
Demand has no effect on Kij’s. Failure Percentage affects only Kr1,
with a strong effect. The second order interactions do not have any
strong effects on Kc1; however, the interaction of Pattern with
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Lifecycle Pattern has a medium effect on Kc1. Similarly, Kc2 is
affected by the medium effects of the three second order interactions
between Pattern, Residence Index and Lifecycle Pattern. Kr1 is affected
by the strong effect of the interaction of Failure Percentage with
Lifecycle Pattern, and by the medium effect of the interaction of
Pattern with Lifecycle Pattern. Finally, Kr2 is affected only by the
strong effect of the interaction of Lifecycle with Pattern. The third
order interactions have no strong effects on Kij’s, except the
interaction of Pattern with Residence Index and Lifecycle Pattern on
Kc2. Similarly, Kr1 is affected by the medium effect of the interaction
of Pattern with Failure Percentage and Lifecycle Pattern.

The joint examination of Tables 2 and 3, and of the detailed
simulation results (not shown for brevity), lead to the following
observations regarding the capacity planning control parameters:

• he optimal Kc1 value-range 17.2 to 23.2 is insensitive to the
studied factors, except for Lifecycle Pattern “c” and only for
Pattern 3, where its values are close to 13.2 for lc,0.2 and close to
15.2 for lc,0.4. In most cases of the numerical experiments the
economies of scale associated with capacity expansion dictate one or
two expansion decisions due to the fact that their driving force is
the used-product information; this forces the system to expand
collection capacity quickly, explaining the rather high Kc1 values.

• he values of Kc2 have no effect on the system’s profitability for
medium and high values of residence indices. Specifically, from the
detailed results and for Residence Index values equal to 0.5 and
0.35 is observed that different values of Kc2 affect the system’s
profitability less than 1%. The explanation of this insensitivity is
that the optimal decision to contract Collection Capacity is made
near the end of the lifecycle, thus having no impact on the
profitable part of collection activities. On the contrary, for
Residence Index 0.2 the profitability is sensitive to the values of
Kc2 but only for Pattern 3 and Lifecycle Pattern “a”, “b” and “c”.

• he optimal Kr1 values are affected by Failure Percentage; the lower
the value of Failure Percentage, the more the supply of
remanufacturable products in the reverse channel. Hence, lower
values of Failure Percentage indicate higher values for Kr1.

• he optimal values of Kr2 do not exhibit a systematic behaviour; for
all experiments with Pattern 3, for about 95% of the experiments
with Pattern 2 and for about 40% with Pattern 1 the optimal values
of Kr2 are less than 6. Although the usefulness of this information
is limited, the interesting characteristic is that for the rest of
the cases where Kr2 is greater than 6, the system’s profitability is
affected less than 2% if Kr2 receives values less than 6.

The examination of the results obtained by the numerical investigation
suggests the following, regarding the Lifecycle Pattern of demand:

• The optimal capacity planning policies for a given Failure
Percentage are almost the same for the sets of lifecycle patterns
Lifecycle Pattern “a” and “b”, and Lifecycle Pattern “d”, “e” and
“f”, while exhibit instability for Lifecycle Pattern “c”.

• The most favorable Lifecycle Pattern for the system’s profitability
is Lifecycle Pattern “d”, either for Failure Percentage 0.2 or 0.4.
Lifecycle Pattern “e” follows, having almost the same profitability
for Failure Percentage 0.2 but a lower one for Failure Percentage
0.4, compared to the respective cases of Lifecycle Pattern “d”.



Athanasiou-Georgiadis, 169-180

MIBES 2009 - Oral  179

Lifecycle Pattern “a” appears to perform worse than all others, by
diminishing profitability (compared to that of Lifecycle Pattern
“d”) by 25.61% for Failure Percentage 0.2, and by 20.22% for Failure
Percentage 0.4 (mean value of the differences between the same
cases). These results show that the system performs best when the
Lifecycle Pattern has a trapezoid form with a long maturity stage.

• Due to the irregularities that introduces to the system’s behavior,
Lifecycle Pattern “c” appears to be avoided, if possible.

Additionally, the analysis of the results obtained by the numerical
investigation lead to the following observations of major importance:

• If the Peak Demand of 1000 units/week is considered as the middle
value, the near-optimal values of Kij are exactly the same to those
for a 50% increase or decrease of Peak Demand, equal to 1500 and 500
units/week respectively. This insensitivity is observed in all
experiments for all combinations of the characteristics shown in
Table 1. Although it is in principle risky to generalize on the
basis of numerical examples, the embedded capacity planning policy
leads to the conjecture that the optimal values of Kij are indeed
robust to “moderate” changes in the actual total demand.

• From all the control factors and their interactions, only a few have
a significant effect on the response variables. This response shows
that the embedded capacity planning modeling approach is qualified
for use in systems characterized by uncertainty.

• The most favorable Residence Index is 0.2 (shorter usage period that
gives greater opportunity for remanufacturing), followed by 0.35,
whereas 0.5 performs worse than the first two.

Concluding Discussion

In this paper, we present an experimentation on the SD model for
capacity planning in CLSC networks introduced by Georgiadis et al.
(2006). In particular, we track near-optimal capacity planning
policies for the collection and remanufacturing activities, taking
into consideration six quite different lifecycle patterns and specific
lifecycle and product characteristics; the 648 studied experiments
cover a broad area of possible cases about the lifecycle of a product.

The results presented in this paper certainly do not exhaust the
possibilities of investigating all the aspects of capacity planning in
remanufacturing networks. The model’s versatility allows, with
suitable modifications, the systematic examination of the efficiency
of alternative types of capacity planning modeling. A possible
extension could also be the study of the impact of the residence time
to the remanufacturability level of the used products.
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