
Hatzikonstantinou-Liberopoulos-Pandelis, 189-199

MIBES 2009 - Oral 189

The Economic Lot Sizing Problem for
Continuous Multi-grade Production with

Stochastic demands

Olympia Hatzikonstantinou
Department of Mechanical Engineering

 University of Thessaly, Pedion Areos, Volos 38334, Greece
ohatzikon@mie.uth.gr

 George Liberopoulos
Department of Mechanical Engineering

 University of Thessaly, Pedion Areos, Volos 38334, Greece
glib@mie.uth.gr

Dimitrios Pandelis
Department of Mechanical Engineering

 University of Thessaly, Pedion Areos, Volos 38334, Greece
d_pandelis@mie.uth.gr

Abstract
We study a variant of the Stochastic Economic Lot Scheduling Problem
(SELSP) in which a single production facility must produce several
grades to meet random stationary demand for each grade from a common
finished-goods (FG) inventory buffer with limited storage capacity.
Demand that can not be satisfied directly from inventory is lost. Raw
material is always available, and the production facility produces at
a constant rate. When the facility is set up to produce a particular
grade, the only allowable changeovers are from that grade to next
lower or higher grade. All changeover times are deterministic and
equal to each other. There is a changeover cost per changeover
occasion, a spill-over cost per unit of product in excess, whenever
there is not enough space in the FG buffer to store the produced
grade, and a lost-sales cost per unit short, whenever there is not
enough FG inventory to satisfy demand. We model the SELSP as a
discrete-time Markov Decision Process (MDP), where in each time period
we must decide whether to initiate a changeover to a neighboring grade
or keep the setup of the production facility unchanged, based on the
current state of the system, which is determined by the current setup
of the facility and the FG inventory levels of all the grades. The
goal is to minimize the infinite-horizon long-run average cost. For 2
and 3-grade problems we can numerically solve the resulting MDP
problem using successive approximation. For problems with more than
three grades, we develop a heuristic solution which is based on
approximating the original multi-grade problem into many 3-grade sub-
problems and numerically solving each sub-problem using successive
approximation. We present and discuss numerical results for incidences
with 2, 4 and 5 grades, using both the exact numerical and the
heuristic solution procedure.
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Introduction

Scheduling production of multiple products, each with random demand,
on a single facility with limited production capacity and significant
changeover costs and times between products is a classic problem in
production planning research that is often referred to as the
Stochastic Lot Scheduling Problem (SLSP). Sox et al. (1999)
distinguishes between two versions of the SLSP: the Stochastic
Economic Lot Scheduling Problem (SELSP) and the Stochastic Capacitated
Lot Sizing Problem (SCLSP), for consistency with the deterministic
demand literature. The SELSP assumes an infinite planning horizon and
stationary demand, whereas the SCLSP assumes a finite planning horizon
and allows for non-stationary demand. The SELSP is better suited for
continuous-processing manufacturing, whereas the SCLSP is more
appropriate for discrete-parts manufacturing. Discrete-parts
manufacturing is characterized by individual parts that are clearly
distinguishable and is often encountered in the industries of computer
and electronic products, electrical equipment and appliances,
transport equipment, machinery, fabricated metal, wood, furniture
products, etc. Process industries, on the other hand, operate on
material that is continually flowing, as is the case with petroleum
and coal products, metallurgical products, non-metallic mineral
products, food and beverage products, paper products, etc. Generally,
process industries are capital intensive and focus on high-volume,
low-variety production. In a typical process industry, the production
facility operates continuously, and the different products are really
variants of the same family that differ in one or more attributes,
such as grade, quality, size, thickness, etc. Often, the different
grades are related in such a way that the only allowable changeovers
are from one grade to the next higher or lower grade in the chain. For
example, if the facility produces three grades, A, B, and C – A being
the lowest and C being the highest – the allowable changeovers are
between A and B, between B and C, but not directly between A and C.
The deterministic version of the SELSP, the so-called ELSP has
received considerable attention (e.g., see the surveys of Elmaghraby,
1978 and Salomon, 1991). Both analytical and heuristic solutions for
the ELSP derive rigid cyclic production plans, which in many multi-
grade plants take the form of rigid product slates or wheels, whereby
all grades are produced sequentially in a cycle, starting from the
lowest grade, going up all the way to the highest grade, and returning
down to the lowest grade. In the previous example with the three
grades, a complete product grade slate would be A-B-C-B-A.
Unfortunately, cyclic plans do not work well for the stochastic
problem, for two reasons. hey focus on lot-sizing and not on dynamic
capacity allocation and the inventories of finished products serve not
only to reduce the number of changeovers but also to hedge against
stock-outs. In the stochastic problem, both lot-sizing and capacity
allocation have to be considered simultaneously, and the dynamics have
to be included in the plan (Graves, 1980).

In this paper, we study a variant of the SELSP in which a single
production facility must produce several grades to meet random
stationary demand for each grade from a common finished-goods (FG)
inventory buffer with limited storage capacity. Demand that can not be
satisfied directly from stock is lost. Raw material is always
available, and the production facility produces at a constant rate all
the time. When the facility is set up to produce a particular grade,
the only allowable changeovers are from that grade to next lower or
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higher grade. In many industries, it is customary to divide the
intermediate grade produced during a changeover, say from grade A to
grade B, into two halves, and classify the first half as A and the
second half as B, although in reality the grade of the product coming
out of the production facility may gradually change from grade A to
grade B. In this paper, for simplicity, we assume that the grade
produced during a changeover from A to B is classified as A, and the
grade produced during the reverse changeover, from B to A, is
classified as B. Under this assumption, the amounts of grades A and B
that will be produced in the long run will be the same as those that
would have been produced had we divided the produced grade during a
changeover into two halves. We also assume that all changeover times
are deterministic and equal to each other. The cost structure of our
model includes a changeover cost per changeover occasion, a spill-over
cost per unit of product in excess, whenever there is not enough space
in the FG buffer to store the produced grade, and a lost-sales cost
per unit short, whenever there is not enough FG inventory to satisfy
demand. The assumptions presented above are realistic and are based on
a real dynamic scheduling problem of a PET processing plant, presented
in Liberopoulos et al. (2009).

We model the SELSP problem described above as a discrete-time Markov
Decision Process (MDP), where in each time period the decision is
whether to initiate a changeover to a neighboring grade or keep the
setup of the facility unchanged, based on the current state of the
system, which is determined by the current setup and the FG inventory
levels of all the grades. The goal is to minimize the infinite-horizon
long-run average cost.

Because of its theoretical and practical importance, the SELSP problem
has received considerable attention in the literature. A comprehensive
review of related works can be found in Sox et al. (1999) and Winands
et al. (2005). From these reviews, it is apparent that there have been
two approaches to the SELSP. One approach is to develop a cyclic
schedule using a deterministic approximation of the stochastic problem
and develop a control rule for the stochastic problem to pursue this
schedule. The other approach, which we follow in this paper, is to
develop a dynamic schedule that determines which product to produce
based on the current state of the system.

One of the first papers that looked at the SELSP as a discrete-time
stochastic control problem with dynamic sequencing is Graves (1980).
Graves first solves a one-product problem with inventory-backorder
costs and changeover costs, but no changeover times, where the
decision in each period is to produce or idle the facility. He then
uses the solution of the one-product problem as the basis for a
heuristic procedure to solve the multi-product problem. In that
heuristic, scheduling conflicts among different products are solved by
comparing the value functions derived for each individual and
“composite” product from the one-product analysis. The composite
product is a concept that Graves introduces to help anticipate
possible scheduling conflicts in the multi-product problem. The idea
is that the composite inventory of several products should indicate
the need for current production, in case the individual product
inventories are deemed just adequate when viewed separately.

Qiu and Loulou (1995) look at a problem with Poisson demand,
deterministic processing and changeover times, and changeover and
inventory-backlog costs. They model the problem as a semi-Markov
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decision process, where the objective is to decide in each review
epoch which product, if any, to set up the facility to produce, in
order to minimize the infinite-horizon, discounted cost. The review
epochs are those points in time when either the production facility is
idle and some demand arrives, or when a part has just been processed
and the production facility is free. They use successive approximation
to generate near-optimal control policies by solving the problem on a
truncated inventory space, and compute error bounds caused by the
truncation. They present numerical results for two-product problems,
and state that systems with more than two products are limited by the
curse of dimensionality.

Leachman and Gascon (1988) develop a dynamic, periodic review control
policy that determines which products to produce and how much, based
on solutions of deterministic ELSP that account for non stationary
demand. This solution is modified if two or more products are close to
being stocked out or are backordered.

Finally, Sox and Muckstadt (1997) and Karmarkar and Yoo (1994) develop
finite-horizon stochastic mathematical programming models for the
SELSP, that can also be classified as SCLSP, with deterministic
production and changeover times, and use Lagrangian relaxation for
finding optimal or near-optimal solutions for problems of small sizes.
Our work in this paper follows the stream of papers that view the
SELSP as a discrete-time periodic-review control problem with dynamic
production sequencing and global lot sizing, and is most closely
related to Graves (1980) and Qiu and Loulou (1995). It differs from
previous works in that it considers a new variant of the SELSP, where
the only allowable changeovers are from one grade to the next lower of
higher grade. The latter feature renders problems with a large number
of grades amenable to heuristic solution procedures that are based on
approximating the original problem by many smaller (i.e., with fewer
grades) sub-problems that are computationally easier to solve. Thus,
for two-grade and three-grade problems we are able to numerically
solve the resulting MDP problem using successive approximation, and
obtain insight into the optimal control policy. For problems with N
grades, where N > 3, we develop a heuristic solution which is based on
decomposing the original N-grade problem into (N – 2) 3-grade sub-
problems and numerically solving each sub-problem using successive
approximation. Each 3-grade sub-problem is an approximation of the
original N-grade problem, where the middle grade in the sub-problem
corresponds to one of the grades in the original problem, the low
(left) grade in the sub-problem is the composite of all grades in the
original problem that are lower than the middle grade, and the high
(right) grade is the composite of all grades that are higher than the
middle grade. For example, if the original problem consists of five
grades, A-B-C-D-E, we formulate the following 3-grade sub-problems: A-
B-(C+D+E), (A+B)-C-(D+E), and (A+B+C)-D-E, where the notation “(A+B)”
indicates the composite grade formed by grades A and B. After solving
all the sub-problems, the heuristic control policy for the original N-
grade problem is obtained by combining parts of the optimal policies
of the sub-problems.

The rest of this paper is organized as follows. In Section 0, we
present the stochastic dynamic programming formulation and solution of
the MDP model of the original N-grade problem. The heuristic procedure
for solving problems with more than three grades is outlined in
Section 0. Finally, numerical results for problem incidences with 2, 4
and 5 grades, using both the exact numerical and the heuristic



Hatzikonstantinou-Liberopoulos-Pandelis, 189-199

MIBES 2009 - Oral 193

solution procedure are presented in Section 0, and conclusions are
drawn in Section 0.

Problem Formulation and Dynamic Programming Solution

We consider a discrete-time model of a production facility that can
produce N different grades, one at a time. Grade changeovers are only
allowed between neighboring grades, n and n + 1, n = 1, …, N – 1. The
changeover time is one period. In each time period, the production
facility produces P units of the grade that is was set up for at the
beginning of the period. The quantity produced is stored in a common
FG buffer with a finite storage capacity of X units; any excess amount
that does not fit in the buffer is spilled over, incurring a spill-
over cost of CS per unit of excess product. The FG buffer is flexible
in that it can contain any quantity of any grade at the same time, as
long as the total amount does not exceed X. After the quantity
produced by the facility has been added to the FG buffer, a vector of
random demands D ≡ (D1, …, DN) must be met from FG inventory. The
demand for grade n, Dn, n = 1, …, N, is a discrete random variable with
known stationary joint probability distribution. For each grade n, the
part of the demand that can not be satisfied from FG inventory, if
any, is lost, incurring a lost-sales cost of CLn per unit of
unsatisfied demand. In many real problems, P is not considered as a
control variable for scheduling purposes, because changing P may cause
instabilities in the production process. In this paper, we assume that
P is fixed and equal to (or close to) the total expected demand for
all grades.

We formulate the dynamic scheduling problem of the production facility
as a discrete-time MDP, where the state of the system at the beginning
of each period is defined by the vector y ≡ (s, x1, …, xN), where s is
the grade that the facility is set up for during that period and xn, n
= 1, …, N, is the FG inventory level of grade n at the beginning of
the period. Note that s ∈ {1, …, N}, and the set of allowable
inventory levels is determined by all integers xn, n = 1, …, N, such
that 0 ≤ n xn ≤ X. Thus, the size of the state space is ½⋅N⋅XN. The
decision, u, to be made at the beginning of each period is whether to
initiate a changeover to a neighboring grade or leave the facility
setup unchanged. Thus, if the current setup is s, the allowable
decisions are given by the set U(s), where U(1) = {1, 2}, U(N) = {N –
1, N}, and U(s) = {s – 1, s, s + 1}, s = 2, …, N – 1. If the decision
is to initiate a changeover, then this changeover will be in effect at
the beginning of the next period. A decision to initiate a changeover
at the beginning of a period incurs a changeover cost CC in that
period. Suppose that the state of the system at the beginning of a
period is y, decision u is taken, and demand D is realized. Let
g(y,u,D) be the cost incurred during that period and let y′ ≡ (s′, x1′,
…, xN′) = f(y,u,D) be the state of the system at the beginning of the
next period. From the above discussion, it is clear that s′ = u and xn′
= [xn + p(y)⋅In=s – Dn]+, n = 1, …, N, where p(y) is the amount added to
the FG buffer after the facility produces P units and before the
demand is satisfied and is given by p(y) ≡ min{P, X – n xn}, Ia is the
indicator function which takes the value of 1 if a is true, and 0
otherwise, and [x]+ ≡ max{0, x}. Moreover, g(y,u,D) = CC⋅Iu≠s + CS⋅(P –
p(y)) + n CLn⋅[Dn – xn – p(y)⋅In=s ] +.
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The objective is to find a state dependent policy u = (y) that
minimizes the long-run (infinite-horizon) expected average cost per
period, denoted by J. To find such a policy we need to solve the so-
called Bellman equation, which can be written as J + V(y)  =
minu∈U(s)Tu(V(y)), where V(y) is the differential cost starting from
state y, and the operator Tu(⋅) is defined as Tu(V(y)) ≡ ED{ g(y,u,D) +
V(y′)}. The minimizer in the Bellman equation determines the optimal
policy when the system is in state y, denoted by *(y).

We solve the Bellman equation by the method of successive
approximations. We denote by Vk(y) the value of the differential cost
function at the kth iteration. Initially, we set V0(y)  =  0 ∀ y. The
values at the (k + 1)th iteration are obtained from the previous
iteration by the recursion Vk+1(y) = T(Vk(y)) – T(Vk( )), where T(Vk(y))
= minu∈U(s)Tu(Vk(y)) and  is an arbitrarily chosen special state. Note
that in each iteration the differential cost for the special state is
reset to zero. Assuming that the iteration scheme converges to some
values V(y), then from the recursion equation, these values must
satisfy T(V( )) + V(y) = T(V(y)). A comparison of this equation and
the Bellman equation reveals that J = T(V( )).

To implement the successive approximation method, at each iteration k
= 1, 2, … we compute the maximum and minimum differences, VkU =
maxy{Vk(y)  –  Vk–1(y)} and VkL = miny{Vk(y)  –  Vk–1(y)}. The procedure is
terminated when VkU – VkL < ⋅T(Vk( )), where  is some small positive
scalar.

Heuristic Solution

Although the exact method presented in the preceding section can in
principle determine the optimal policy for any number of grades, it
becomes computationally intractable for more than three grades. In
this section, we present a heuristic procedure that approximates any
N-grade problem, N > 3, by several 3-grade sub-problems and then uses
the sub-problem solutions (determined by the exact numerical method)
to construct a heuristic policy for the original problem. More
specifically, the heuristic procedure works as follows. Let S denote
the original N-grade problem. Then, for each grade n, n = 2, …, N – 1,
we formulate a 3-grade sub-problem, denoted by Sn, in which the middle
grade is grade n, the low grade is the composite of all grades that
are lower than n, i.e., grades 1, …, n – 1, and the high grade is the
composite of all grades that are higher than n, i.e., grades n + 1, …,
N; hence Sn is an approximation of the original problem S. For each
sub-problem Sn, we define the state of the system by the vector yn =
(sn,  wn,  xn,  zn), where sn ∈ {1, 2, 3} and wn and zn are the total
inventory levels of the low and high composite grades, respectively,
and are given by wn ≡ x1 + … + xn–1 and zn ≡ xn+1 + … + xN. In each sub-
problem Sn, the demand distribution of the middle grade is the same as
the demand distribution of grade n in the original problem, the demand
distribution of the low grade is the convolution of the demand
distributions of grades 1, …, n – 1 in the original problem, and the
demand distribution of the high grade is the convolution of the demand
distributions of grades n + 1, …, N in the original problem. We use
the exact method to obtain the optimal policy n

*(yn) of sub-problem Sn.
The heuristic policy for the N-grade problem, denoted by (y), is then
constructed by using parts of the optimal policies of the sub-
problems, as follows: (1, x1, …, xN) = 2

*(1, 2, x2, 2), (N, x1, …,
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xN) = N–1
*(3, N–1, xN–1, N–1), and (n, x1, …, xN) = n

*(2, n, xn, n), n
= 2, …, N – 1, where n and n are the “aggregate” inventory levels of
the low and high composite grades, respectively, which represent in
some aggregate way their individual components and hence are given by
n = h(x1, …, xn–1) and n = h(xn+1, …, xn) for some appropriate function
h, which will be defined next.

First, note that 2 =  x1 and N–1 =  xN, because in these cases the
composite grade corresponds to a single grade. We now focus on n, n >
2, as n is obtained in exactly the same way. An obvious choice for the
aggregate inventory level of the composite grade made up of grades 1,
…, n – 1 is the sum of the inventory levels of the individual grades,
i.e., n = wn. This is a reasonable choice, especially with respect to
estimating potential spill-over costs, but may underestimate the
possibility of lost sales when one or more of the individual
components of the composite grade is very low compared to the others.
To illustrate this, suppose that the facility is currently set up to
produce grade 4, and that the inventory levels of grades 1-4 are x1 =
x2 = 15, x3 = 0, and x4 = 6. Then, in sub-problem S4, the inventory
level of the middle grade would be x4 = 6, and the total inventory
level of the low composite grade would be w4 = x1 + x2 + x3 = 30. In
this case, the optimal policy obtained by solving S4 might indicate
that it is optimal for the facility not to changeover to the low
composite grade, because there is enough of it (30 units) in storage
compared to the inventory level of the middle grade 4, which is much
lower (6 units). What the heuristic fails to see in this case is that
although the sum of the inventory levels that make up the composite
grade is relatively high, one of its components, namely x3, is zero,
and unless the facility changes over to grade 3, a heavy stock-out
penalty is likely to be incurred in the current and in the following
period.

To take into account such a situation, we seek an aggregate inventory
level, n, for the composite grade made up of grades 1, …, n – 1 that
would result in the same value of the expected lost sales for that
composite grade as that computed by summing the expected lost sales of
the individual component grades of the composite. The sum of the
expected lost sales of the individual grades is given by LS = E[D1 –
x1]+ + … + E[Dn–1 – xn–1]+. The expected lost sales for a given inventory
level w of the composite grade is equal to E[(D1 +  …  +  Dn–1) – w]+;
therefore, n is the value of w that makes the latter expression as
close as possible to LS. To compute this expression we first need to
derive the probability distribution of the aggregate grade demand by
convolution of the probability distributions of individual grade
demands. In case this is not computationally convenient we propose the
following faster alternative.

We approximate the sum of the expected lost sales of the individual
grades by LS = [E(D1) – x1]+ + … + [E(Dn–1) – xn–1]+. If all inventory
levels xi are large enough so that LS = 0, we set n = wn. Otherwise,
we define ên = [E(D1) + … + E(Dn–1)] – LS, and we set n to be a linear
combination of ên and wn, i.e., n = ên + (1 – )wn , rounded to the
nearest integer, for some 0 ≤ ≤ 1.
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Numerical Results

In this section, we present numerical results for problem examples
with 2, 4 and 5 grades, using both the exact numerical and the
heuristic solution procedure presented in the previous sections.
First, we look at a 2-grade example (N = 2), where P = 5 and the
demand distribution for the two grades is given in    Table 1.

   Table 1: Demand distribution of the 2-grade example

Pr(Dn=i)
n \ i 0 1 2 3 4 5 6 E(Dn)

1 0.1 0.15 0.15 0.2 0.15 0.15 0.1 3
2 0.15 0.15 0.4 0.15 0.15 0  0 2

   Table 2 shows the number of iterations of the successive
approximation procedure until convergence, denoted by kc, for
convergence tolerance criterion  = 0.001, and the resulting optimal
long-run average cost, J, for various combinations of space capacity,
X, and cost parameters, where it is assumed that both grades have the
same lost-sales cost rate, i.e., CL1 = CL2 = CL. From the results, is
can be seen that as X increases, kc increases and J decreases, as is
expected. J also increases as the cost parameters increase.

   Table 2: Results for the 2-grade example
X = 40 X = 60 X = 80 X = 100

Case CC CS CL kc J kc J kc J kc J
1 1 5 5 186 0.9824 474 0.618 895 0.4503 1447 0.354
2 1 10 10 188 1.7454 472 1.0965 891 0.7985 1444 0.6277
3 2 5 5 179 1.1640 448 0.7342 844 0.5354 1367 0.421
4 5 10 1 181 1.6842 437 1.0682 806 0.7806 1286 0.6146
5 5 1 10 211 1.6933 515 1.074 956 0.7848 1538 0.6178
6 2 10 10 186 1.9648 474 1.2361 895 0.9006 1447 0.7079
7 10 1 1 340 1.1409 369 0.7536 408 0.5587 588 0.4445
8 10 5 10 168 2.7141 411 1.7277 761 1.2644 533 0.9962
9 1 10 5 225 1.3610 555 0.855 1032 0.6228 1659 0.4896

10 1 5 10 253 1.3679 632 0.8593 1184 0.626 1908 0.4921

Figure 1 shows the optimal changeover policy as a function of
inventories x1 and x2, for cases 1 and 3 of Table 2, for X = 40, and is
representative of the other cases as well.
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Figure 1: Optimal changeover policy for cases 1 (left) and 3 (right)
of    Table 2, for X = 40
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In both cases 1 and 3, the optimal policy partitions the inventory
space in several regions, each characterized by a different optimal
changeover action. If we let *(s, R) denote the optimal policy when
the facility is set up to produce grade s and the inventory levels are
in region R, then *(1, a) = *(2, a) = 1, *(1, b) = *(2, b) = 2,
*(1, c) = 1, *(2, c) = 2, *(1, d) = 2, *(2, d) = 1. Thus, the
optimal policy dictates the following actions: When the inventory
levels are in region a, changeover to produce grade 1, when in b,
changeover to produce grade 2, when in c, do not changeover, and when
in d, changeover to the other grade. A typical production sequence
when the inventory levels are in and around region d would be one
where the facility changes over from one grade to the other in each
period. When the inventory levels are in region c, the facility would
be producing grade 1 in successive periods until the inventory levels
cross the border between regions c and b and then changing over to
grade 2 and producing that grade until the inventory levels cross the
border between regions c and a. Notice that region c is wider in case
3 than in case 1, indicating that in case 3 it is optimal to produce
longer runs of the two grades with less frequent changeovers, because
the changeover cost in case 3 is twice as much as in case 1. In fact,
the widening of region c in case 3 is big enough to eliminate region
d. Another observation is that the inventory space partition is more
or less symmetric for the two grades but with a slight displacement in
favor of grade 1, because grade 1 has a higher demand than grade 2.
Next, we look at a 4-grade (N = 4) and a 5-grade (N = 5) example. In
each example, we assume that the demand for each grade is identically
distributed to one of the random variables Dj, j = A, B, …, E, F, whose
distributions are given in    Table 3.

   Table 3: Demand distributions for the 4-grade and 5-grade examples

Pr(Dj = i)
J \ i 0 1 2 3 E(Dj)
A 0.65 0.25 0.05 0.05 0.5
B 0.4 0.5 0.05 0.05 0.75
C 0.25 0.5 0.25 0 1
D 0.25 0.25 0.5 0 1.25
E 0.25 0.25 0.25 0.25 1.5
F 0.05 0.2 0.45 0.3 2

For each example, we consider four cases, each with a different demand
pattern that captures a different way that total demand is distributed
among the individual grades. In each case, the total expected demand
is equal to the production rate. First, we solve each case optimally
by dynamic programming, using  = 0.001. Then, we solve each case by
the heuristic. In the implementation of the heuristic we use the
faster alternative to approximate the sum of the expected lost sales
of the individual grades, described at the end of Section 0, for
values of  ranging from 0 to 1 with a step of 0.1. In all cases we
assume that CC = 1, CS = CLn = 1, n = 1,…, 5, and P = 6. The results
for the 4-grade example, for X = 30, are shown in Table 4. The
notation “F,C,F,C” in column 2 is used to indicate that D1 is
distributed as DF,  D2 is distributed as DC, etc. The computational
(CPU) times are in hours. For the heuristic, we show the total CPU
time it takes to solve the 3-grade problems and generate the heuristic
policy, but not the time it takes to evaluate the heuristic policy.
The optimal value of  in the heuristic is denoted * and the
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corresponding long-run average cost is J( *). The last column shows the
percentage cost increase between the heuristic and the optimal policy.

Table 4: Results for the 4-grade example

 Demand Exact Heuristic % cost
Case pattern kc CPU J * CPU J( *) Difference

1 F,C,F,C 187 52.41 1.1835 0.1 0.024 1.3207 11.59
2 F,C,C,F 110 41.84 1.2881 0.1 0.054 1.3139 1.96
3 C,F,F,C 55 21.57 1.0034 0.7 0.024 1.2442 24.00
4 F,F,C,C 156 48.22 1.0927 0.5 0.038 1.2253 12.13

From the results, we observe that cases 1 and 2 have higher expected
costs compared to cases 3 and 4. This is because in the latter two
cases the grades with the highest demands are adjacent in the sequence
of allowed changeover transitions, while in the first two cases any
transition between those two grades has to go through other grades,
thus incurring higher switching costs. In all cases, except case 3,
the heuristic average cost is insensitive to parameter . Case 3 tends
to have lower cost for  between 0.5 and 0.8 and significantly higher
cost for  between 0.9 and 1. The cost difference between the
heuristic and the exact solution is 1.96% for case 2, where the end
grades 1 and 4 have the highest demand, and 24% for case 3, where the
middle grades 2 and 3 have the highest demand. The heuristic is
between 700 and 2,000 times faster than the exact solution.

The results for the 5-grade example, for X = 20, are shown in    Table
5. Cases 2 and 3 have higher average costs because they require more
product switches to move between products with the highest demands. A
significant difference with the 4-grade example is that the heuristic
average cost seems to be an increasing function of , which means that
the best heuristic policy is obtained when n = wn. The cost difference
between the heuristic and the exact solution is between 10% and 20% in
all cases, and the heuristic is between 3,000 and 120,000 faster than
the exact solution.

   Table 5: Results for the 5-grade example

 Demand Exact Heuristic % cost
Case pattern kc CPU J * CPU J( *) Increase

1 C,C,F,C,C 48 32.27 2.944 0 0.010 3.414 15.96
2 E,D,A,D,E 87 142.77 4.076 0 0.014 4.918 20.66
3 E,B,E,B,E 65 125.51 3.851 0 0.023 4.293 11.48
4
5
6
7

B,D,F,D,B
F,D,D,B,B
F,D,B,B,D
F,B,D,B,D

35
71
129
129

38.05
 78.70
369.40
140.30

2.652
3.002
3.492
3.657

0.1
0.1
0
0

0.008
0.004
0.003
0.003

3.036
3.451
3.876
3.935

14.48
14.96
11.05
7.59

Conclusions

We studied a variant of the SELSP in which a single production
facility must produce several grades to meet random demand for each
grade from a common FG inventory buffer with limited storage capacity.
The only allowable changeover of the facility is from one grade to
next lower or higher grade. All changeover times are deterministic. We
modeled this problem as a discrete-time MDP, where in each time period
it must be decided whether to initiate a changeover to a neighboring
grade, based on the current state of the system. The goal is to
minimize the infinite-horizon long-run average changeover, spill-over
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and lost-sales cost. For 2-grade and 3-grade problems we proposed to
numerically solve the resulting MDP problem using successive
approximation. For problems with more than three grades, we developed
a heuristic solution which is based on approximating the original
multi-grade problem into many 3-grade sub-problems and numerically
solving each sub-problem using successive approximation. We presented
numerical results for problem incidences with 2, 4 and 5 grades, using
both the exact numerical and the heuristic solution procedure. For the
4 and 5-grade examples, the cost difference between heuristic and
exact solution was as small as 1.96% and as high as 24%. The main
advantage of the heuristic is that it was between 700 and 120,000
times faster than the exact solution.
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