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Abstract 

In this paper we provide some insights in the structure of the Greek 

Parliament from the perspective of social network analysis. We use 

historical and publicly available data to create a social network 

(i.e. a graph) that comprises of all members of the Greek 

Parliament for a period of 80 years, together with their 

interactions. We present a visualization of these data and 

calculate some well-established metrics, coming from social network 

analysis in this social network. Our results indicate that the 

Greek Parliament Network (GPN) is a small-world network, rather 

dissasortative and very difficult to disconnect. We finally argue 

that this network may be prone to produce corruption in its general 

sense.  

 

Keywords: social network analysis, small worlds, politics, Greek 

parliament, assortativity coefficient, scale-free networks 

 

Jel Classification Codes: Z10, C1, A14 

 

Introduction and motivation 
 

In the recent years, Greece has been suffering from a very severe 

financial crisis. There has been a lot of public discussion on the 

reasons that lead the Greek state to such a hard position and, of 

course, many different scholars, politicians and journalists try to 

explain the situation. Many reasons, mostly macroeconomic ones have 

been proposed and widely accepted as playing a role in the “Greek 

drama”, however, it seems that the political position of the person 

that proposes such reasons is bounded by its political thesis.    

 

However, to our knowledge, almost everybody in Greece, regardless of 

his/hers political view, agrees that one of the main reasons that lead 

Greek Economy (and of course Greek society) in such a harsh position 

is corruption. Certainly, the notion of corruption is quite broad. One 

can realize many different aspects of corruptive behaviour since by 

definition “corruption is perversion or destruction of integrity in 
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the discharge of public duties by bribery or favour” (Oxford English 

Dictionary, 2010). In (Granovetter, 2007) it is reported that recent 

literature is dominated by economic treatments that focus on 

identifying structures of incentives that make corruption more likely 

and on assessing the impact of corruption on economic efficiency. Such 

arguments are usually framed in terms of agency theory, where a 

corrupt individual is an agent betraying a principal who has vested 

fiduciary obligations in him. In such treatments, the relationship 

between agent and principal is defined by how incentives are arranged, 

and the actors are otherwise indistinguishable or “representative” 

individuals. Granovetter also argues that although such models may be 

reasonable, other things equal, in practice they underdetermine 

outcomes because they abstract away from the social aspects of how 

incentives come to be arranged as they are and how they come to be 

endowed with the value and the meaning that they ultimately have for 

actors. These important questions lie largely outside an economic 

frame of reference and require analysis of social, cultural, and 

historical elements.        

 

Having in mind the above “wise” direction, we have decided to focus on 

one of the largest, most historical and probably one of the most 

influential public organizations in Greece: the Greek Parliament. We 

will use techniques and tools from Social Network Analysis to 

represent a simplistic model of the Greek parliament, calculate a set 

of well defined metrics on it, compare it with other real life 

networks and discuss these results in the context of weather its 

structure favours corruption in any way. 

   

Network theory or social network analysis theory is a mature theory 

which can help exploring the nature of interconnected unities 

(Wassermann and Faust, 1994). This theory first emerged by Moreno (as 

noted in Scott, 2000), a field anthropologist, and then studied 

successively within Graph Theory, a branch of pure mathematics started 

from Euler. Graph Theory has been playing a central role in Computer 

Science ever since Harary’s modern introduction in 1969 (Harary, 

1969). Social Network Analysis has been one of the fields with 

exploding research in the past twenty to thirty years, yielding 

extensive literature, both in textbooks and journals. SNA ideas and 

results have been extensively used in many applications and cases, 

ranging from structural anthropology to marketing and banking and from 

viral infection to sociology. 

 

In the following sections we organise our presentation as follows: In 

Section 2, we present some terminology and basic indexes used in 

topological network analysis. In Section 3 we will present the 

networks we have assembled. These networks are used in Section 4 were 

we calculate our metrics, compare them with other real-life or 

artificially created networks and discuss our numerical results. A 

final discussion and future perspectives is outlined in the last 

section. 

 

Network theoretical terms  
 

In pure mathematics, a graph G consists of the pair (V, A), where V = 

{v1, v2, …, vN} is the finite set of vertices (or nodes, or actors) of 

cardinality |N| and A = {l1, l2, …, lL} is the finite set of links (or 

edges) of cardinality |L|, where lk  = (vi, vj), vi, vj ε V and lk ε 

A. When the pair (vi, vj) is ordered, then the graph is called 



Kydros-Magoulios-Trevlakis, 200-211 

Oral – MIBES                                                       202 
25-27 May 2012  

 

 

directed and we talk about arcs instead of links, otherwise the graph 

is undirected. Every directed graph can be simplified as an undirected 

one, however in this procedure there is a loss of probably important 

information. Links of the type (vi, vi), when allowed, are called 

loops. Finally, there are cases where more than one links connect the 

same pair of nodes, in other words there can be multiple lines in a 

graph. When a graph has by default no multiple lines and no loops, it 

is called a simple graph. 

 

When one or more weights are assigned to each link, this graph is 

called a network. However, in recent literature as in Hanneman and 

Riddle (2005), the two terms (graph and network) are not 

distinguishable in this manner. A graph is also a network and a 

network with weights on its links is met as a valued network. 

One of the most important features of graph (or network) theory is the 

fact that every network can be drawn on the plane or in three 

dimensions. In this way, the overall structure of the network is shown 

in a pictorial way, which in turn can help us discover (otherwise 

difficult to find) properties. There exist a number of techniques (see 

Pajek, 2007) available for drawing each with certain advantages and 

disadvantages. We will use the most prominent ones like MDS 

(multidimentional scaling) and spring embedding.  

 

A path is a sequence of vertices, where each vertex is written only 

once and there exists a link connecting two subsequent vertices. The 

length (of a path is the number of “hops” needed to complete the path.  

 

A graph is called disconnected when there exist at least two nodes not 

reachable to each other. Some nodes play a very important role here, 

since their removal disconnects the graph. When the removal of one  

node leaves the graph disconnected, then it is called an articulation 

points connecting different bi-components.  

 

There are a large number of different data structures which can be 

used to store a network in a computer’s memory. One of the most 

straightforward ones (Gross and Yellen (2004)) is the adjacency matrix 

A, which is a NXN matrix where: 

 

 

 

 

Traditionally we investigate nodes in a network regarding their 

overall position, with respect to all other nodes. We thus try to find 

which (if any) nodes are more important than others. A common 

technique is to measure the centrality index of nodes and compare all 

nodes according to this index. We will use three different 

measurements of centrality, namely degree, closeness and betweenness 

centrality (see Sec.4.1 for precise definitions).   

 

However, in recent literature, there is a shift in the perspective 

from which we examine a network, leaving individual nodes and 

regarding more general, topological issues that hold over the whole 

network. Newman (2002a), has assembled a set of metrics regarding the 

topology of a simple, undirected network. We will use this approach 

since it has been reported as the most important and concise. More 

specifically we will deal with link density, degree, distance, 

diameter, eccentricity, clustering coefficient, assortativity 

coefficient and algebraic connectivity. 
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Link Density, S, is the ratio of the actual number of links, L, 

divided by the maximum possible number of links that could exist in a 

network. Obviously, in a network with N nodes, the maximum possible 

number of links will be exactly 

2

)1( 
 

which is the case of a complete graph where each node is connected to 

all other N-1 nodes of the network. Thus, link density is calculated 

as: 

)1(

2




NN

L
S  

and can take values in [0..1]. 

 

The Degree, di, of node vi is the number of links emanating from vi. 

In directed networks we have to deal with in-degree and out-degree 

(link going to a node and links leaving a node respectively), however 

we will deal only with undirected networks. Since every link 

contributes to two nodes, the average degree of the network can be 

easily calculated as: 

N

L
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The Distance between two nodes vi and vj is the length of the shortest 

path that connects vi to vj. The average distance of a network is the 

average of all distances in this network. 

 

The Diameter, D, of a network is the longest distance over all pairs 

of nodes. 

 

The Eccentricity of a node is the largest distance from this node to 

any other node in the network. All node eccentricities can be 

averaged, yielding the average eccentricity of the network. 

 

The Clustering Coefficient, CCi, of node vi, is the ratio of the 

actual number of links of vi’s neighbours, divided by the maximum 

possible number of links in this neighbourhood. If a node has large 

clustering coefficient, then its neighbours tend to form highly 

interconnected clusters. If vi has exactly K neighbours which 

interconnect with M links between them, then CCi is calculated as: 
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The average on all CC’s for all the nodes of a network is the average 

clustering coefficient of the network. 

 

The Assortativity Coefficient, R, of a network, can take values in [-1, 

1] and is calculated as follows: 
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where ji and ki are the degrees of the nodes at the ends of the i-th 
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link, and i=1..L. The calculations needed are somehow complicated; 

however R denotes the degree-similarities between neighbouring nodes. 

When R is less than zero, a node is connected with other nodes of 

arbitrary degrees. However, when R is greater than zero and closing to 

one, nodes tend to connect with other nodes with similar degrees 

(assortative networks). 

 

The Algebraic Connectivity of a graph, studied by Chung (1997), is the 

second smallest eigenvalue of its Laplacian Matrix. The Laplacian 

Matrix of a graph G with N nodes is the NXN matrix Q=Δ-A, where A is 

the adjacency matrix of G and Δ=diag(di). The larger the algebraic 

connectivity, the more difficult it is to find a way to cut a graph to 

many different components. 

 

Formation of the Greek Parliament Network (GPN) 
 

When we try to assemble a network, two critical questions arise 

(Wasserman and Faust, 1994): 

a. Where are the actual data? 

b. Who are the ‘actors’ in the network? The answer to this question 

will yield the set of nodes.  

c. How do we define the ‘relation’ between those actors? Obviously, 

the answer to this question will yield the set of links. 

 

These three questions are not so easy to answer. Regarding question 1, 

collecting data can be a very tedious or even extremely difficult 

task, especially when these data are historical and not in digital 

form. The Library of Greek Parliament has edited a large volume which 

presents all members of Parliament (MPs), from 1929 up to 1974, 

however these come in a very large pdf file which was produced by 

scanning images of handwritten pages. We had to use these files for 

the period that begins in 1929 and ends in 1974, since after that year 

and up to 2011, all MPs were stored digitally on the Greek Parliament 

site. As for question 2, in a network that represents human entities, 

an actor will most probably represent a human. Hence, our nodes are 

all the MPs that serviced during the above period. There exist exactly 

2,787 such nodes.  

 

After the formation of the set of nodes, we have to decide on the 

definition of the relation between them. However, this relation can 

take quite different meanings, especially when we try to investigate 

real-life situations. For example we may choose to relate actors if 

the like each other, if they hate or dislike each other, in they fight 

to each other or if they cooperate. In each one of these cases, 

different networks will be produced, since the links will differ, 

despite the fact that the set of nodes will be the same. In the 

network we investigate, a line is drawn between two nodes when the 

corresponding actors ‘interact’ in some way. We use the terms 

‘interaction’ in the sense that if two MPs happen to serve during the 

same time period, then those MPs will certainly interact, regardless 

of the context. It must be emphasized that this is the simplest, most 

general form of interconnection and therefore ‘most dangerous’ in the 

sense that it does not incorporate a homogenous interpretation. A more 

suitable definition of relations is a prospect of future work. All in 

all, there exist exactly 930,314 such links, connecting the 2,787 

nodes1.   

                                                 
1 All relevant data are available via e-mailing to dkydros@teiser.gr  
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In Fig. 1 we present GPN, created following the above discussion. We 

have used the proposed methods from the literature, as noted in Pajek 

(2007) and Borgatti, Everett and Freeman (2002) (Ucinet), namely an 

initial application of Fruchterman-Reighgold spring-embedding 

algorithm, followed by a number of applications of the Kamada-Kawai 

algorithm, which brings closer nodes with high interconnectivity. 

 

Structural and Numerical Analysis 
 

From Fig. 1, some important features of the network emerge in a 

straightforward manner. It is therefore obvious that the graph is 

connected, that is, all nodes are reachable from all the others. This 

is a not so easily expected result, especially in Greece were during 

the time period investigated, there have been two dictatorships, the 

Second World War and a civil war. In two time periods, namely from 

1936 to 1946 and from 1967 to 1974, the Greek Parliament was 

suspended. Obviously, even after those historical periods, a 

reasonable number of MPs resumed their positions and were re-elected, 

thus serving as bridges between those time periods. It can also be 

easily seen in Fig. 1 that MPs fall in two large chunks of nodes which 

represent the time period before and after the dictatorship (1967-

1974).   

 

 
Figure 1: A drawing of the full simple GPN 

 

Centrality issues 

 

Important nodes in the network can emerge in terms of centrality 

measurements. In network analysis it is typical to use and compare 

three different measurements of centrality, namely degree, closeness 

and betweenness centrality, which will be briefly explained in terms 

of their natural meaning. 

 

a. In Degree centrality we measure the degree of each node. It can 

be argued that if a node is involved in many interactions, then this 

is an important node, playing an important role. However, this type of 
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centrality focuses on the local view of immediate neighbours and 

sometimes leads to misleading perceptions. 

b. The Closeness centrality of vertex v is a summary measure of the 

distances from v to all other vertices; the number of other vertices 

divided by the sum of all distances between v and all others. 

Intuitively, shorter distances to other vertices should be reflected 

in a vertex's larger closeness score. In this sense, one can think of 

closeness as reflecting compactness. For reasons of easy 

interpretation we inverse this score, so actors with a higher score 

are more important than others. 

c. The Betweenness centrality of a vertex v is the proportion of 

all geodesics between the pairs of vertices which include v. The more 

a vertex is needed for, say, passing of information between all the 

pairs, the higher is its score. In this sense, one can think of 

betweenness as reflecting facilitation of circulation. Nodes with high 

values regarding this measurement act as brokers in communication.  

   

In Table 1, we present the fifteen most prominent nodes (in Greek) 

with respect to their scores in all three centrality measurements. 

 

Table 1:  The fifteen most prominent actors regarding centrality 

 

Rank Node Degree Node Closeness Node Betweenness 

1 
ΚΕΦΑΛΟΓΙΑΝΝΗΣ 

ΕΜΜΑΝΟΥΗΛ Β. 

2,320 ΚΕΦΑΛΟΓΙΑΝΝΗΣ 

ΕΜΜΑΝΟΥΗΛ Β. 
0.8567 

ΚΕΦΑΛΟΓΙΑΝΝΗΣ 

ΕΜΜΑΝΟΥΗΛ Β. 
0.0498 

2 

ΜΗΤΣΟΤΑΚΗΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ 

Κ. 

2,166 ΜΗΤΣΟΤΑΚΗΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ 

Κ. 

0.8180 
ΘΕΟΤΟΚΗΣ 

ΣΠΥΡΙΔΩΝ Ι. 
0.0386 

3 
ΘΕΟΤΟΚΗΣ 

ΣΠΥΡΙΔΩΝ Ι. 

1,986 ΘΕΟΤΟΚΗΣ 

ΣΠΥΡΙΔΩΝ Ι. 
0.7769 

ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ 

ΓΕΩΡΓΙΟΣ Θ. 
0.0340 

4 
ΜΠΟΥΤΟΣ 

ΙΩΑΝΝΗΣ Π. 

1,866 ΜΠΟΥΤΟΣ 

ΙΩΑΝΝΗΣ Π. 
0.7518 

ΜΗΤΣΟΤΑΚΗΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ Κ. 
0.0326 

5 

ΑΒΕΡΩΦ - 

ΤΟΣΙΤΣΑΣ 

ΕΥΑΓΓΕΛΟΣ Α. 

1,818 ΑΒΕΡΩΦ - 

ΤΟΣΙΤΣΑΣ 

ΕΥΑΓΓΕΛΟΣ Α. 

0.7421 
ΒΑΡΒΙΤΣΙΩΤΗΣ 

ΜΙΛΤΙΑΔΗΣ Ι. 
0.0261 

6 

ΚΑΡΑΜΑΝΛΗΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ 

Γ. 

1,811 ΚΑΡΑΜΑΝΛΗΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ 

Γ. 

0.7408 
ΚΑΡΑΜΑΝΛΗΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. 
0.0166 

7 
ΡΑΛΛΗΣ 

ΓΕΩΡΓΙΟΣ Ι. 

1,796 ΡΑΛΛΗΣ 

ΓΕΩΡΓΙΟΣ Ι. 
0.7378 

ΚΟΝΙΤΣΑΣ 

ΘΕΜΙΣΤΟΚΛΗΣ Ι. 
0.0165 

8 
ΚΕΦΑΛΟΓΙΑΝΝΗΣ 

ΙΩΑΝΝΗΣ Κ. 

1,787 ΚΕΦΑΛΟΓΙΑΝΝΗΣ 

ΙΩΑΝΝΗΣ Κ. 
0.7361 

ΣΠΗΛΙΟΠΟΥΛΟΣ 

ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. 
0.0163 

9 

ΚΟΝΙΤΣΑΣ 

ΘΕΜΙΣΤΟΚΛΗΣ 

Ι. 

1,785 ΚΟΝΙΤΣΑΣ 

ΘΕΜΙΣΤΟΚΛΗΣ 

Ι. 

0.7357 
ΚΕΦΑΛΟΓΙΑΝΝΗΣ 

ΙΩΑΝΝΗΣ Κ. 
0.0145 

10 
ΛΑΥΡΕΝΤΙΔΗΣ 

ΙΣΑΑΚ Ν. 

1,778 ΛΑΥΡΕΝΤΙΔΗΣ 

ΙΣΑΑΚ Ν. 
0.7343 

ΚΑΡΑΜΑΝΛΗΣ 

ΑΧΙΛΛΕΥΣ Γ. 
0.0117 

11 
ΣΤΕΦΑΝΙΔΗΣ 

ΜΙΧΑΗΛ Σ. 

1,762 ΣΤΕΦΑΝΙΔΗΣ 

ΜΙΧΑΗΛ Σ. 
0.7312 

ΜΠΟΥΤΟΣ ΙΩΑΝΝΗΣ 

Π. 
0.0111 

12 
ΤΑΛΙΑΔΟΥΡΟΣ 

ΑΘΑΝΑΣΙΟΣ Σ. 

1,742 ΤΑΛΙΑΔΟΥΡΟΣ 

ΑΘΑΝΑΣΙΟΣ Σ. 
0.7274 

ΒΑΡΒΙΤΣΙΩΤΗΣ 

ΙΩΑΝΝΗΣ Μ. 
0.0082 

13 

ΜΑΥΡΟΣ 

ΓΕΩΡΓΙΟΣ Ι. 

1,738 ΜΑΥΡΟΣ 

ΓΕΩΡΓΙΟΣ Ι. 0.7267 

ΑΒΕΡΩΦ - 

ΤΟΣΙΤΣΑΣ 

ΕΥΑΓΓΕΛΟΣ Α. 

0.0079 

14 
ΖΙΓΔΗΣ 

ΙΩΑΝΝΗΣ Γ. 

1,717 ΖΙΓΔΗΣ 

ΙΩΑΝΝΗΣ Γ. 
0.7227 

ΡΑΛΛΗΣ ΓΕΩΡΓΙΟΣ 

Ι. 
0.0074 

15 
ΚΑΡΑΜΑΝΛΗΣ 

ΑΧΙΛΛΕΥΣ Γ. 

1,706 ΚΑΡΑΜΑΝΛΗΣ 

ΑΧΙΛΛΕΥΣ Γ. 
0.7206 

ΛΑΥΡΕΝΤΙΔΗΣ 

ΙΣΑΑΚ Ν. 
0.0065 
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A number of interesting observations can emerge from Table 1. 

Regarding degree centrality, we can see that there exist a number of 

authorities – hubs which connect to an extreme number of other nodes. 

Recalling that N=2,787 it is a big surprise to see that the top first 

node is connected to the 85% of all other nodes. Furthermore, all 

fifteen nodes connect to more than 60% of all other nodes. To anyone 

familiar to Modern Greek political situation, all these nodes 

represent MPs that have been serving during the ‘50s, ‘60s and even in 

the first period of ‘70s, right after the reinstallation of democracy. 

This could mean that the refreshment rate of MPs is very poor.  

 

Another surprise comes from the fact that rankings are exactly the 

same regarding both degree and closeness centrality. This fact assures 

us that the overall structure is rather monolithic, a very tightly 

closed “family” were it very easy for a large number of nodes to 

contact or influence other actors. 

 

Regarding betweenness centrality, the situation is somehow changed, 

since new nodes come forward and there exists a small rearrangement in 

the rankings. Again, to all those familiar to politics, these MPs 

served almost continuously during the ‘60s and ‘70s and even the ‘80s 

or ‘90s !.   

 

Overall, it should be noted that the actual numbers in all three 

rankings are quite high compared to other social networks, especially 

when we include the time period during which GPN is formed. We will 

discuss this comparison furthermore in the next subsection, when we 

calculate more metrics on this and other networks.  

 

Numerical Results and comparison to other networks 

 

In this section we present our numerical results. Apart from Pajek, in 

order to obtain the most recent topological metrics, i.e. 

assortativity coefficient and algebraic connectivity, we used NetworkX 

from Hagberg, Schult and Swart (2008), a Python-based package for the 

creation and manipulation of networks and igraph for R by Csardi and 

Nepusz (2006), a similar package, and we developed some code, written 

in Python and R, to calculate these metrics.  

 

In Table 2 we present the actual numbers for all the metrics defined in 

Section 2, compared to other well known and investigated networks from 

the literature (Jamakovic, 2007). 

 

Table 2: Some network metrics and comparisons 

 

Metric 
Value 

GPN DST BSP ACT INT 

Num. of Nodes (N) 2787 691 13411 10143 20906 

Num. of Links (L) 930314 10450 315566 147907 42994 

Density 0.239 0.044 0.0035 0.0029 0.0002 

Average Degree 667.609 30.25 47.10 29.16 4.11 

Assortativity Coefficient -0.022 -0.063 0.12 0.026 -0.20 

Average Distance 1.851 4.49 3.29 3.71 3.89 

Diameter 3 11 -- 13 11 

Average Eccentricity 2.601 8.59 -- 9.57 8.03 

Av. Clustering Coefficient 0.822 0.75 0.79 0.76 0.21 

Algebraic Connectivity 39.332 0.16 -- 0.0004 0.015 
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In Table 2., DST represents a network comprised of the Dutch Soccer 

National Team players (over a period of 80 years), BSP is similar bur 

with Brazilian players, ACT is a network of Actors playing in the same 

movies and INT is a snapshot of interconnected routers at the 

autonomous system level. We decided to include these (and not others) 

networks because they all incorporate a large period of time during 

witch they were formed.  

  

The average Link Density, S, equals 0.239. The meaning of this metric 

is that in GPN there exists almost 24% actual links over the maximum 

possible number of links. The network is definitely extremely dense; 

actually, its density cannot be compared to all other networks and 

furthermore we have not been able to identify any real-life network 

that is so dense (we can always create dense networks in laboratory 

conditions or in very small real graphs). The Average Degree, E(di), 

is 667.609, meaning that in average, every MP has interacted with 

(close to) 667 other MPs. The actual degrees vary from 121 to 2320 

(ΚΕΦΑΛΟΓΙΑΝΝΗΣ ΕΜΜΑΝΟΥΗΛ Β.). Τhere are no pendant nodes (degree=1).  

 

A more interesting result is the average Distance, the average 

shortest path over all actors. An average value of 1.851, means that 

we can generally find a path of this length between any two pairs of 

actors. Reversely, a Diameter of value 3 means that the longest 

geodesic (the longest shortest path) is again very small. The path 

that actually achieves this value starts from node ‘ΦΙΚΙΩΡΗΣ ΙΩΑΝΝΗΣ’ 

(1974 to 1997) and ends on ‘ΖΗΣΙΜΟΠΟΥΛΟΣ ΑΝΤΩΝΙΟΣ’ (1929 to 1931).  

 

It is a surprise to see that these steps are not close to the value of 

6, which in turn is exactly the number proposed by Watts and Strogatz 

(1998) and others, known widely as the “six degrees of separation” 

principal, which holds for a vast number of different real-life 

networks. Our results indicate with no doubt that GPN does not follow 

this principal.  

 

The extremely small average shortest path, together with the very high 

values of Clustering Coefficient (0.822) yields the very interesting 

property of a small - world. Indeed, as noted in Watts (1999), the 

relationship found between these two metrics also proves that such a 

network is generally a small-world. One other property of this type of 

networks is the existence of a small number of hubs (nodes with very 

high degree), while all other nodes have relatively small degrees. All 

actors (and some more not listed) from Table 1 are actually hubs. 

 

The negative value for the Assortativity Coefficient, (R=-0.022), 

reveals that within GPN actors do not tend to interact with other 

actors possessing a similar degree. If R was equal to 1, then all 

actors would connect to others with exactly the same degree. On the 

other hand, if R was -1, then all actors would connect to others with 

different degrees in an extreme manner (i.e. hubs with pendants). In 

our case, however we cannot draw a stable conclusion from such a 

value. This result is in contradiction to the generally accepted 

principle of homophily in real-life networks, i.e. the general belief 

that nodes tend to connect to similar nodes, regarding one property. 

Of course, the particular relation examined on one network does 

influence this metric: friendship ties do indeed behave differently 

than other ties. However, recent results found in Newman (2002b), 

indicate that homophily is generally met in human interaction 

networks, where human psychological factors play a very important role 
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or networks freely formed in nature, whereas the opposite holds for 

networks formed in economy and business. For example, Newman (2002b) 

has found that large banks tend to lent money in small banks – not in 

other large banks. GPN definitely should belong to the first category 

since the process of its formation over time should obey the general 

sociological rules. 

     

Our final result, Algebraic Connectivity (39.3), is a measurement of 

the general robustness of the networks. Small values would indicate 

that the networks are easily cut in disconnected components. A value 

of zero (0) means that the network is already disconnected. In Chung 

(1997) it is reported that this metric is bounded below by 1/(N*D) and 

in fact by 4/(N*D). Algebraic Connectivity is upper-bounded by the 

traditional connectivity of a network, that is, by the size of its 

smallest cut-set, meaning that it takes the removal of about 40 nodes 

to disconnect this network. 

 

Final discussion, Conclusions and further Research 
 

In this paper we investigated the Greek Parliament Network (GPN) 

through the perspective of Social Network Analysis. We prepared a data 

set of interactions between actors and formed a network with the 

assistance of some Python code and software like Pajek. In turn, we 

investigated some structural features of this network and calculated 

some important topological metrics.  

 

In many cases, especially when we tried to compare GPN to other real-

life networks, we came to a surprise. This network, despite the fact 

that was created during a very large period of time, does not follow 

the expected norms; instead it looks more and more like an 

artificially created network. The main issue here is the extreme 

density and the very small diameter. Every MP, all over time, can 

reach every other MP in two steps. Of course, because of natural 

reasons, this does not happen in reality but can be traced through 

historic documents or through hubs with extremely large centrality 

properties. A definite result is that this network does not change as 

expected through time. Some MPs service period span over three or even 

four decades.  

 

GPN thus is a rather monolithic organization. When almost everyone can 

reach almost everyone else, then an extremely notion of consensus is 

easily met. Metrics like the ones presented in the previous section, 

are met only in families or in organizations like the army where 

everyone is expected to interact to each other or to work with each 

other for a special purpose. One can easily deduce that GPN does not 

generally act as a network but as a single node in many cases. 

Actually, it is common knowledge in Greece that whenever an MP is 

prosecuted for criminal reasons, a large number of others vote in 

favour of a form of asylum, to protect their colleague. A great deal 

many such criminal cases, including accusations for corruption, have 

stopped or halted in this way.  

 

It is interesting to see that despite the usual “charged” political 

climate in Greece, when it comes to investigating corruption, it seems 

that the whole Parliament, through subtle movements and law 

manipulation, moves as a whole trying to stop, halt or postpone its 

decisions. We argue that density and small geodesics is the main 

reason for such a behaviour. This organization acts and reacts more 

like a family that protects its members than a political organization.  
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Some steps can be taken in order to reverse this situation, over time. 

In order to increase paths and reduce density, a simple way to achieve 

this would be to prohibit any MP from being re-elected more than once. 

The use of a list of candidates instead of the “crossing” system in 

elections (where voters use the sign of the cross to note their 

preference on one of many candidates), would help. Any measure that 

would overcome this excess power in a modern democratic way, like 

frequent public referendums, would be very helpful. Similar measures 

that could lead to such a directions have many times been discussed in 

public fora, but, as already mentioned, it seems that whenever such a 

discussion arises nothing is really done (the system protects itself 

and its members - a really corruptive behaviour).        

 

Our approach can be researched and discussed in more detail in the 

future. One thread would be to compare GPN with other Parliament 

networks (i.e. the European Parliament or the Italian Parliament), 

using the same metrics we used here. It would be interesting to 

explore, for example, if density is so large in a country of the 

European South or smaller. Again, it will be interesting to try to 

create a mathematical model that produces such networks, since the 

well-known models of Barabasi or Watts are not so helpful in 

generating such a graph. Finally the data could be used to form 

different networks, perhaps in smaller periods of time or by 

partitioning the nodes according to the political parties they belong. 

A very interesting but extremely hard (due to lack of automated data 

mining techniques) would be to identify relations of kin in this 

network in order to investigate nepotism.  

 

From the sociological or political aspect of view, it would be very 

interesting to clarify the reasons why GPN produces such a condensed 

or monolithic behaviour. Of course such an approach should be 

discussed with scholars that specialize in such fields.  
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